The goal of smartread is to provide a single function API for reading in data from common file types.

Installation

You can install the development version of {smartread} from Github with:

Example

This is a basic example which shows you how to use read_smart()

## basic example dat
exdat <- datasets::mtcars

## save as multiple different file types
saveRDS(exdat, "exdat.rds")
save(exdat, file = "exdat.rda")
write.csv(exdat, "exdat.csv")

## now read and view the .rds file
head(c1 <- read_smart("exdat.rds"))
#> # A tibble: 6 x 11
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  21       6   160   110  3.9   2.62  16.5     0     1     4     4
#> 2  21       6   160   110  3.9   2.88  17.0     0     1     4     4
#> 3  22.8     4   108    93  3.85  2.32  18.6     1     1     4     1
#> 4  21.4     6   258   110  3.08  3.22  19.4     1     0     3     1
#> 5  18.7     8   360   175  3.15  3.44  17.0     0     0     3     2
#> 6  18.1     6   225   105  2.76  3.46  20.2     1     0     3     1

## now read and view the .csv file
head(c2 <- read_smart("exdat.csv"))
#> Warning: Missing column names filled in: 'X1' [1]
#> # A tibble: 6 x 12
#>   X1       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <chr>  <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#> 1 Mazda…  21       6   160   110  3.9   2.62  16.5     0     1     4     4
#> 2 Mazda…  21       6   160   110  3.9   2.88  17.0     0     1     4     4
#> 3 Datsu…  22.8     4   108    93  3.85  2.32  18.6     1     1     4     1
#> 4 Horne…  21.4     6   258   110  3.08  3.22  19.4     1     0     3     1
#> 5 Horne…  18.7     8   360   175  3.15  3.44  17.0     0     0     3     2
#> 6 Valia…  18.1     6   225   105  2.76  3.46  20.2     1     0     3     1

## now read and view the .rda file
head(c3 <- read_smart("exdat.rda"))
#> # A tibble: 6 x 11
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  21       6   160   110  3.9   2.62  16.5     0     1     4     4
#> 2  21       6   160   110  3.9   2.88  17.0     0     1     4     4
#> 3  22.8     4   108    93  3.85  2.32  18.6     1     1     4     1
#> 4  21.4     6   258   110  3.08  3.22  19.4     1     0     3     1
#> 5  18.7     8   360   175  3.15  3.44  17.0     0     0     3     2
#> 6  18.1     6   225   105  2.76  3.46  20.2     1     0     3     1